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(Recdved 20 Apt//1994) 

It is shown that the solution of a homogeneous quasilincar elliptic system of two equations has a monotonicity property, according 
to which each of the two functions considered varies monotonically along the level line of the other function. A connection between 
the monotonicity property and the extremal properties of the solutions of the systems considered is pointed out. An algorithm 
for converting certain inhomogeneous and, in particular, homogeneous systems into homogeneous ones is proposed, which 
considerably extends th~z amount of information on the monotonicity properties and on the extremal properties of the solutions. 
The value of the results~ obtained is demonstrated using the example of the axisymmetrie and plane flow of an incompress~le 
fluid and a gas. 

Monotonicity properties were established for the first time for plane subsonic potential flows of a gas 
and later also for vortex flows [1, 2], where the modulus of the velocity vector (later the pressure) 
and the slope of the: velocity vector were used as the functions. This property has been widely employed 
[1-7] to analyse potential and vortex flows. The monotonicity property was also established in [8] for 
the asymptotic equations of transonic axisymmetric subsonic flows. 

In this paper we initiate a natural trend, on the one hand, to investigate how wide is the class of 
systems the solutio,ns of which possess the monotonicity property and, on the other hand, to widen 
the amount of information on the monotonicity properties of each of the systems considered, in 
particular, for the equations of hydrodynamics. 

L Consider the following homogeneous quasilinear elliptic system 

a i l u  x + ai2Uy + bi(ox + bi2"Oy = 0 (i = 1,2) (1.1) 

We will assume that aq = aij(x, y, u, ~), bij = bq(x, y, u, ~)  are fairly continuous and bounded functions 
of their arguments. 

Many problems Jal mechanics and physics reduce to an investigation of systems of the form (1.1), 
and also systems of the form (2.1) which will be considered below. 

Using the matrices A = (aq) and B = (bq), system (1.1) can be written as 

AVu + BV'o = 0 

By definition, system (1.1) is elliptic if the characteristic determinant 

l all al2 bll bl: I 

h(~0) = a21 a22 b21 2 
cos(p sincp 0 

0 0 cos~0 sin 9 

does not vanish in the region considered for any real values of the angle ¢p. 
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Together with the determinant h, we will henceforth use the determinants I AI, I B I of matrices A 
and B. It can be shown, and this will be important later, that these determinants do not vanish for 
elliptic system (1.1). 

In fact, an analysis of the discriminant of the characteristic equation h(q)) = 0 shows that 

d = (a  11b22 - a 2 1 b 1 2  + a 2 2 b l  i - a 1 2 6 2 f )  2 - 41AI  IBI 

In the region in which system (1.1) is elliptic, d < 0. Consequently, in this region I AI * 0, I B I * 0, 
I A I I B I > 0 .  

Consider the curve u = const, which is the boundary of the chosen region of an increased or reduced 
value of u (with respect to the curve u = const). This means that when passing through a possible 
branching point, to extend the curve u = const the branch adjoining the given region is chosen. As a 
result, when moving along this curve the sign of the normal derivative of un does not change. 

Theorem 1. When moving along the curve u = const the function ~ varies monotonically, though 
possibly not strictly monotonically. The theorem remains true when the functions u and ~ are 
interchanged. 

Proof.  Suppose the tangential vector l makes an angle 9 with the x axis at an arbitrary point of the 
curve u = const. To calculate the derivatives Ux and uy as a function of the derivative ~t (the derivative 
Ul is equal to zero) by definition, we have a system consisting of Eqs (1.1) and the equations 

cos ~0 ux + sin 9 uy = 0, cos 9 ~x + sin (p ~y = "t  

Solving this system we obtain 

uxh(9) = - ~t sin ~0 IBI, uyh(tp) = ~)tcos (p IB.I 

Hence we have ~ t  = unh(9)/I B I. 
In the region considered the determinants h(~0) and I B I do not vanish and their signs do not change. 

By virtue of the choice of the curve u = const the derivative un also does not change its sign. 
Consequently, in the region where system (1.1) is elliptic the derivative ~l does not change its sign 
along the chosen curve u = const and, as a consequence, the function a) varies monotonically as one 
moves along the curve u = const. 

Suppose the tangent to the curve a) = const makes an angle to with the x axis. Then, along the curve 
= const, which is the boundary of the chosen region of increased or reduced values of ~ (with respect 

to the curve a~ = const), we have ut = - %h((o)/I A I. The monotonic variation of the function u along 
the chosen curve ~ = const follows from this relation. This proves the theorem. 

Note also that it follows from the boundedness of the determinants h, I A I and I B I that the equalities 
u:, = uy = 0 are only possible when a) x = 0 and vice versa. 

The results of the theorem clearly illustrate and supplement the well-known maximum principles 
for the functions u and ~. In fact, if the function u (or a~) reaches an extremum at an internal point 
of the region in which system (1.1) is elliptic, this point will be enveloped by closed curves u = const 
(or ~ = const), on circumventing which the function ~ (or u) varies monotonically. But this is excluded 
for the uniquely defined functions ~ and u. 

A special consideration is required when the functions can be multivalued. For example, in plane 
subsonic gas flows, when going around closed curves of constant pressure, a change in the slope of 
the velocity vector by an amount which is a multiple of 2n is permissible. This is possible when there 
are internal stagnation points or when there are regions with closed streamlines [9]. 

There is a definite relationship between the monotonicity property considered above and the well- 
known fact that the Jacobian J of the solution of elliptic system (1.1) has a constant sign. In fact, we 
have 

J = Ux~)y - Uy9 x = -u2nh(tp)ll BI = -~)]h((0)/I AI 

Consequently, in the region in which system (1.1) is elliptic the Jacobian J does not change its sign 
and only vanishes when the four derivatives ux . . . .  , ~y are zero. 

When analysing system (1.1) the case when J ,  0 over the whole region of ellipticity is of particular 
interest. This enables us to invert the dependent and independent variables. The inequality J ~ 0 is 
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only possible when there are no internal branching points (the absence of local-extremum points 
follows from the maximum principle). 

As it turns out, for certain boundary-value problems, the fact that there are no branching points 
can be proved by analysing the curves u = const and a) = const, emerging from the branching point 
considered. 

We will illustrate this using the example of a problem when not more than two points correspond 
to each value of ~ at the boundary of the region considered. Not less than four level curves , = const 
emerge from the given branching point. Then, on going in a circle around the branching point between 
the two closest level curves, along which 1) l ~ 0, a level curve must necessarily exist along which 
a)t ~< 0 and vice versa, respectively. These discussions are based on the fact that inside the region in 
which system (1.1) is elliptic, the derivatives u~, uy, ~x, ~y can only be simultaneously equal to zero 
at isolated points but not on any section. By Theorem 1 these level curves cannot be closed on one 
another. Consequently, they must reach the boundary of the region, but this does not agree with the 
condition of the problem. Hence, the assumption that there is an internal branching point is disproved. 

This situation ~:curs, in particular, in plane steady non-separating flow of an incompressible fluid 
in a closed channel formed by two non-intersecting closed convex curves. Another example, which 
relates to the flow around convex bodies, is given in [6]. 

2. Consider the inhomogeneous quasilinear elliptic system 

ailUx + ai2uy + bij'ox + bi2"Oy = c i (x ,  y, u, "0) (i = 1,2) (2.1) 

which differs from (1.1) in having non-zero right-hand sides. For this system the conclusions drawn 
above regarding the monotonic change in the functions u and ~ along the curve x) = cost and u = const, 
respectively, lose their meaning. In this connection those transformations of the functions u and ~ for 
which a system changes from being inhomogeneons to homogeneous is of some interest. Such 
transformations are also of interest from the point of view of converting one homogeneous system 
into another homogeneous system. To construct such transformations we will use the following 
considerations. 

As we know, the homogeneous system (1.1) has a two-parametric family of solutions 

u = a ,  ~)=b (2.2) 

where a and b are arbitrary constants. 
The converse is .also true. If relations (2.2) are a solution of system (2.1) for arbitrary constants a 

and b, then when q = c2 = 0, system (2.1) itself is homogeneous and is identical with system (1.1). 
These facts suggest the following possible algorithm for converting inhomogeneous system (2.1) 

into homogeneous system (1.1). 
Suppose system (2.1) has a two-parametric family of solutions 

u = U(x,  y, ~,, y), "o = V(x, y, ~,, y) (2.3) 

where U and V are known functions, and X and T are arbitrary constants. 
For our further constructions it is more convenient to use an implicit form of writing this family of 

solutions, namely 

](x, y, u, "o) = a, g(x, y, u, "o) = b (2.4) 

where f and g are k~own functions, and a and b are arbitrary constants. 
The constants a and b need not be the same as the constants X and ~/. They are expressed in terms 

of X and yusing certain arbitrary functions. In other words, each family of solutions (2.3) can be written 
in implicit form in an unlimited number of ways. 

Finally, the above discussion and a comparison of relations (2.4) and (2.2) indicate that the trans- 
formation of inhomogeneous system (2.1) into a homogeneous system can be achieved by replacing 
the functions u and u in a = f(x, y, u, ~) and 13 = g(x ,  y ,  u, ~)  by the functions f and g from (2.4). 

T h e o r e m  2. Suppose the inhomogeneous system (2.1) with bounded and fairly continuous functions 
a11,. • •, b22, cl, c2 satisfies the two-parametric family of solutions (2.3), which in turn can be written 
in an unlimited number of ways in implicit form (2.4), and suppose also that in the region considered 
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the Jacobian J = fug~ - f~gu ~ O. Then, by replacing the functions u and a) by the functions c¢ = f(x, y, 
u, "o) and [i = g(x, y, u, a)) we can convert the inhomogeneous system (2.1) into a homogeneous system 
with bounded coefficients for the derivatives of ct and I~. 

In fact, direct calculation of the derivatives of ux, a)x, uy, x)y using the system 

fuUx + f~'Ox = o~x - f x ,  guux + g~'Ox = [ix - gx 

and a similar system with the derivatives with respect to x replaced by the derivatives with respect 
to y, and substituting the values obtained into (2.1) leads to an inhomogeneous system, on the left- 
hand side of which the derivatives c~x, cry, I~x, I~y with bounded coefficients are collected, while on the 
right-hand side, in addition to the functions cl and c2, there are the derivatives fx, fy, gx, gy with 
coefficients. But, from the condition of the theorem, arbitrary constant values of ct and 13 are the 
solution of the system obtained. Consequently, the right-hand side of this system is equal to zero, while 
the system itself is homogeneous. 

Obviously, Theorem 2 remains true if the initial system is homogeneous. In this ease we are dealing 
with the replacement of one homogeneous system by another. In particular, since the two-parametric 
family of solutions (2.2) satisfies the homogeneous system (1.1), it also satisfies family (2.4) with fairly 
continuous arbitrary functions f and g, which depend only on u and a). Consequently, the non-degener- 
ate transformation ct = f (u ,  a)) and ~ = g(u, a)), J ~ 0 convert system (1.1) into another homogeneous 
system. 

We can draw the following conclusions from Theorems 1 and 2. 
If the homogeneous elliptic system (1.1) (or the inhomogeneous system (2.1)) has a two-parametric 

family of solutions (2.4), and in the region considered the Jacobian J = f~g~ - f~g,. # 0, the ftmctions 
f(x,  y, u, a)) and g(x, y, u, ~)) in the arbitrary solution of this system vary monotonically and, possibly, 
not strictly monotonically, along the curves g(x, y, u, a)) and f(x, y, u, a)) = const. (Here, as previously, 
we have assumed that when passing a possible branching point of the curve f =  const, for continuation 
a branch is chosen which is the limit of the chosen region of increased or decreased values of f.) A 
direct consequence of this for the function f (the function g), which at each point of the region 
considered has a unique value in the x, y plane, is that there are no dosed curves f = const (g = const), 
which lie as a whole in the region considered, and also that there are no internal extremum points of 
the function f (the function g). 

As it applies to homogeneous system (1.1) this indicates that the classical maximum principle, which 
holds for the functions u and a), can also be extended to the function f(x,  y, u, a)) and g(x, y, u, a)), 
which define a two-parametric family of solutions of the form (2.4) of system (1.1). We also note that 
for system (1.1) one can use as the functions f and g arbitrary fairly smooth functions which depend 
only on u and 1), for which the above Jacobian J # 0. 

The number N, 0 ~< N ~< 0o, of possible relations (2.3), and the functions U and V occurring in them, 
are determined by the form of the specific system (1.1) or (2.1) considered, and are important 
characteristics of the system considered. As mentioned above, each relation (2.3) can be written in 
implicit form (2.4) in an unlimited number of ways. Of relations (2.4) and relations (2.3) corresponding 
to them, those for which an analysis of the curves f = const and g = const enables useful conclusions 
to be drawn regarding the properties of the solution of the boundary-value problem for the system 
considered are of particular interest. 

3. We will consider some applications of the results obtained above to plane and axisymmetrie flows 
of ideal (inviscid and non-heat-conducting) incompressible fluids and gases. Vortical and potential 
flows are described by the following systems of equations 

(M 2 - l)(px cos 0 + py sin 0) + pq2 (_0x sin 0 + 0~. cos O) = - I.tpq 2 sin O / y (3.1) 

-px sin0 + py cos O + pq2 (0 x cos 0 + 0v sin O) = 0 

(/,i 2 -- C 2 )U x -I- IKD(Uy + 1) x ) "4- (1) 2 -- ¢2 )'Oy = ~1)C 2 / y (3.2) 

Uy - "t) x = 0 

Here and henceforth p, p and s are the pressure, density and entropy, related by the equation of state 
p = p(p, s), q and 0 are the modulus and slope of the velocity vector, M is the Math number, c is the 
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velocity of sound, u and x) are the projections of the velocity vector on the x and y axes (in the axisym- 
metric ease thex  ~utis coincides with the axis of symmetry), and ~t = 0, 1 in the plane and axisymmetric 
eases. In the ease of an incompressible fluid c = **, M = 0. We will consider different types of flows in 
the following sequence. 

Axisymmetric vortex flows. Two-parametric families of solutions of the form (2.3) and (2.4) are not 
known either for a gas or for an incompressible fluid. As a consequence, homogeneous systems of 
equations of the form (1.1) describing such flows are also not known. 

Plane vortex flows. Only one two-parametric family of solutions of the form (2.3) are known both 
for a gas and for an incompressible fluid 

p = ~. = const, 0 = ~/= const (3.3) 

Consequently, ,the functions p and 0 have the property of monotonicity, according to which the 
function 0 is monotonic along the curve p = const and vice versa. For an incompressible fluid this 
holds for all regions of the flow, while for a gas it only holds in the subsonic region of the flow. These 
properties of the functions p and 0 were pointed out for the first time in [2] and they were actively 
used to analyse w)rtieal subsonic flows in [2-7]. 

The family of solutions (3.3) can be written implicitly in the form (2.4) by a number of other methods, 
for example, in the form 

p cos 0 = a = const, p sin 0 = b = const (3.4) 

Consequently, the functions f = p cos 0 and g = p sin 0 also have the monotonicity property. By 
replacing the functions p and 0 by the functions tz = p cos 0 and 13 = p sin 0 we convert the homogeneous 
system (3.1) into ~mother homogeneous system. 

Axisymmetric potentialflows. For gas flows there are two two-parametric families of solutions of 
the form (2.3). The first of these corresponds to the exact solution for flow from sources (sinks), 
uniformly distribuled over the axis of symmetry with specific intensity b (for b > 0 we have a source 
and for b < 0 we have a sink) and moving along the axis of symmetry with constant velocity u = a. 
The quantities a and b are also the parameters of the solution. The natural (but not unique) form of 
representing this flow in implicit form (2.4) is as follows: 

u = a ,  yp1)=b (3.5) 

It follows from this that in arbitrary subsonic axisymmetric potential flow the functions f = u and 
g = yp1) possess the monotonicity property, according to which g is monotonic along the curve f = 
const and vice versa. By replacing the functions u and 1) by the functions a = u and 13 = yp1) we convert 
the inhomogeneous system (3.2) into the following homogeneous system 

_ fi1) c 2 _ 1)2 
( 1 -  M2)tXx ypc213x + ~ y  =0 
u1) c2 _ 1)2 
C--'2"~x C 2 O~y + ~ x  = 0  

yP 

where the Jacobian of the transition for M < 1 does not vanish. The monotonicity property of the 
functions f = u and g = ya~ for asymptotic transonic axisymmetric equations was pointed out earlier 
in [8]. The second two-parametric family of solutions corresponds to flow from a source (sink) of 
intensity b, placed on the axis of symmetry at the point x = x0; the parameters of the flow are x0 and 
b. One of the possible forms of writing it in the implicit form (2.4) is 

yu py2(u 2 + 1)2)~ 
J '=  x - - -  = x 0, g = 2 = b (3.6) 

1) 1) 

Consequently, the functions f and g possess the monotonicity property in the subsonic region; by 
replacing the functions u and x) by the functions t~ = l a n d  13 = g we can also convert the inhomogeneous 
system (3.2) into a homogeneous system, which we will not give here because of its length. 
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In the case of an incompressible fluid we can add to the above results an unlimited set of two- 
parametric families of solutions of the form (3.2), corresponding to the interaction between a uniform 
oncoming flow and an arbitrary number of sources, sinks and doublets, situated on the axis of symmetry. 
We will confine ourselves to considering the interaction between a uniform flow u = a and a source 
(sink) of intensity b situated at the origin of coordinates. The potential  of this flow has the form 

~p = ax - b(x  2 + y2) -1//2 

Taking into account the fact that ~0x = u, cpy = u, the two-parametric family of solutions in the form 
(2.4) can be written as follows: 

X~x 9(x 2 + Y 2 )'~2 
f = u - - m = a ,  g =  (3.7) 

Y Y 

Consequently, the functions f and g have the monotonicity property, and by replacing the functions 
u and ~ by the functions 0~ = f and [~ = g we can convert the inhomogeneous system (3.2) into the 
following homogeneous system 

(X 2 +y2)'~2(X x +X~x +y~y =0,  (X 2 +y2)'~Oty --Y~x +X~y = 0  

To conclude this section on axisymmetric potential flows, we note  that the homogeneous systems 
derived above for these flows, like other  homogeneous systems which can be constructed using this 
algorithm, are also of some independent  interest, unrelated to the monotonicity properties. 

Plane potential f lows. For gas flows we can propose a four-parametric family of solutions correspond- 
ing to the superposition of a source (sink) of intensity b and a potential  vortex of intensity a with a 
common centre situated at the point  x = x0, y = Y0- The  parameters are the quantities a, b, x0 and Y0. 
By fixing any two parameters  or two combinations of these parameters we can construct a fairly large 
family of  two-parametric solutions of the form (2.3) and (2.4). 

We will confine ourselves to two cases. 
Suppose the parameters x0 and Y0 are fixed. The solution in the form (2.4) can then be written as 

follows: 

f = p(u(x - x 0) + x)(y - Y0)) = a, g = ~(x - x0) - u(y - Y0) = b (3.8) 

Consequently, for subsonic plane potential  flows the functions f and g possess the monotonicity 
property, and by making the replacement  ~x = f, [$ = g we can convert the homogeneous  system (3.2) 
into another  homogeneous system 

( ( X -  Xo)(M 2 - 1) -  ~13 / c2)cxx + ( ( y - y o ) ( M  2 - l ) + u ~ l  c2)CXy - 

-p (M 2 - l)((y - Yo)~x - (x  - Xo)~y ) = 0 

(Y - Yo)°~r - (x - Xo ) °~y ' -P ( (X -  Xo)( M2 - 1 ) -  ~ / c2)~x - P (  (Y - Yo)( M2 - l ) + u~ / c2) x By = 0  

For an incompressible fluid we obtain, after some reduction 

czx + [~y = 0, ~ y -  [~x = 0 

In the next example we fix the parameters  a and b, and the family of solutions in the form (2.4) 
can be written as follows: 

acos0  bsin0 asin0 bcos0 
f = x - -  = x0, g = Y - + = Y0 (3.9) 

Pq q Pq q 

Consequently, for the flows considered the functions f and g possess the monotonicity property, 
and by making the replacement tz =f,  13 = g we can convert the homogeneous system (3.2) into another 
homogeneous system. As might have been expected, each of the equations (3.2) converts into a very 
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complex equation. But, after some reduction, the system can be reduced to the following fairly compact 
system 

(2 - M 2 sin 2 20)(ct x - By) - 2M2 sin 20(Cry sin 2 0 - I]x cos2 0) = 0 

(1 - M 2 sin 2 0)~y + (1 - M 2 cos 2 0)1] x = 0 

where, by (3.9), the functions M and 0 depend on x, y, ct, I~, a and b. 
For an incompressible fluid, the system has the following form 

a x - f ~ y = O ,  ~y + 13x= 0 

It is characteristic that in both of the previous examples it is not obvious if, dispensing with the 
properties of the two-parametric families of solutions of the form (2.4) and replacing the functions 
u and ~ by the functions ~ and I~, which differ considerably from one another, in the case of an 
incompressible fluiid, convert the Cauchy-Riemann system (3.2) into other Cauchy-Riemann systems. 

In addition to the situations considered, in the case of an incompressible fluid we can construct an 
unlimited set of two-parametric families of solutions of the form (2.3), corresponding to the interaction 
between a uniforra free stream and an arbitrary number of sources, sinks, doublets and potential 
vortices, the centres of which are situated at arbitrary points of the x, y plane. 

We will confine ourselves to considering the interaction between a uniform horizontal flee stream 
with velocity u = a and the flow from a source (sink) of intensity b, situated at the origin of coordinates. 
The potential of the resultant flow has the form 

t o = a x  + b ln(x 2 + y2)/2 

A two-parametric family of solutions can be written in implicit form (2.4) as follows: 

f = u - "ox/y = a, g = v ( x  z + y2)/y = h (3.10) 

Consequently, the functions f and g possess the monotonicity property, and by making the replace- 
ment t~ =f, I~ = g we,' can convert the homogeneous system (3.2) into the following homogeneous system 

(x 2 + y2)t~ x + X~x + y~ y  = 0 

( x2 + Y2)O~y - Y~x  + X~y = 0 

The functions l a n d  g constructed above in the ellipticity regions possess the monotonicity property, 
according to which~ the function g varies monotonically along the f = const curve and vice versa. It 
follows from this that at an arbitrary internal point of this region, in which f and  g are uniquely defined 
as functions of the coordinates of this point, the functions may not reach its local extremum. 

Otherwise, in a fairly small neighbourhood of this point dosed level curves of the function considered 
should in fact exist, which contradicts the monotonicity property. 

Isolated points at which one or both of the functions considered is multi-valued are an exception. 
In this case dosed level curves are possible which encompass this point or which pass through it and, 
consequently, a local extremum of one or both of the functions considered is possible at this point. 

As it applies to the functions constructed above, we can distinguish three types of such points: 
internal stagnation points, which are possible, for example, when jets collide (at these points the 
function 0 is multivalued, which is important for f and g in relations (3.3), (3.4), (3.6) and (3.9)); a 
vortex centre, at which p = 0 (this situation is possible in an incompressible fluid; at this point the 
function 0 is also multivalued; this situation is important fo r fand  g in relations (3.3), (3.5)-(3.8) and 
(3.10)); a point with coordinates x = y = 0, at which the function x l y  is multivalued (this is only important 
for the functions f o n d  g from (3.7) and (3.10)). 

In conclusion we note that the extremal propert.ies of the functions p and 0 for plane vortex flows 
were established in [2]. Moreover, the extremal properties of the functions u, ~, q and 0 for plane 
potential flows are well known from classical courses in mathematical physics. 
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